A Probabilistic Reinforcement-Based Approach to Conceptualization
ثبت نشده
چکیده
Conceptualization strengthens intelligent systems in generalization skill, effective knowledge representation, real-time inference, and managing uncertain and indefinite situations in addition to facilitating knowledge communication for learning agents situated in real world. Concept learning introduces a way of abstraction by which the continuous state is formed as entities called concepts which are connected to the action space and thus, they illustrate somehow the complex action space. Of computational concept learning approaches, action-based conceptualization is favored because of its simplicity and mirror neuron foundations in neuroscience. In this paper, a new biologically inspired concept learning approach based on the probabilistic framework is proposed. This approach exploits and extends the mirror neuron’s role in conceptualization for a reinforcement learning agent in nondeterministic environments. In the proposed method, instead of building a huge numerical knowledge, the concepts are learnt gradually from rewards through interaction with the environment. Moreover the probabilistic formation of the concepts is employed to deal with uncertain and dynamic nature of real problems in addition to the ability of generalization. These characteristics as a whole distinguish the proposed learning algorithm from both a pure classification algorithm and typical reinforcement learning. Simulation results show advantages of the proposed framework in terms of convergence speed as well as generalization and asymptotic behavior because of utilizing both success and failures attempts through received rewards. Experimental results, on the other hand, show the applicability and effectiveness of the proposed method in continuous and noisy environments for a real robotic task such as maze as well as the benefits of implementing an incremental learning scenario in artificial agents. Keywords—Concept learning, Probabilistic decision making, Reinforcement Learning.
منابع مشابه
Calibration of Load and Resistance Factors for Reinforced Concrete
Current approach for designing of reinforced concrete members is based on the load and resistance factor. However the load and resistance parameters are random variables, the constant values have been designated for them in the designing procedure. Assuming these factors as the constants, will be led to the unsafe and uneconomical designs. Safe designing of structures requires appropriate recog...
متن کاملProbabilistic Integrated Planning of Primary and Secondary Distribution Networks based on a Hybrid Heuristic and GA Approach
The integrated planning of distribution system reveals a complex and non-linear problem being integrated with integer and discontinues variables. Due to these technical and modeling complexities, many researchers tend to optimize the primary and secondary distribution networks individually which depreciates the accuracy of the results. Accordingly, the integrated planning of these networks is p...
متن کاملA Probabilistic Approach to Transmission Expansion Planning in Deregulated Power Systems under Uncertainties
Restructuring of power system has faced this industry with numerous uncertainties. As a result, transmission expansion planning (TEP) like many other problems has become a very challenging problem in such systems. Due to these changes, various approaches have been proposed for TEP in the new environment. In this paper a new algorithm for TEP is presented. The method is based on probabilisti...
متن کاملA Trust Based Probabilistic Method for Efficient Correctness Verification in Database Outsourcing
Correctness verification of query results is a significant challenge in database outsourcing. Most of the proposed approaches impose high overhead, which makes them impractical in real scenarios. Probabilistic approaches are proposed in order to reduce the computation overhead pertaining to the verification process. In this paper, we use the notion of trust as the basis of our probabilistic app...
متن کاملTemporal Dynamics of Cognitive Control
Cognitive control refers to the flexible deployment of memory and attention in response to task demands and current goals. Control is often studied experimentally by presenting sequences of stimuli, some demanding a response, and others modulating the stimulus-response mapping. In these tasks, participants must maintain information about the current stimulus-response mapping in working memory. ...
متن کامل